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Considered here is the automodel problem for the equations of one- 

dimensional, non-steady motions of ideal non-heat-conducting perfect 

gas (Cauchy’s problem) and the problem of automodel motions of gas 

with properties mentioned above, created by symmetrical expanding 

piston contained in the gas. 

Automodel presentation of the first problem was first given by 

Sedov [ 1 1. Special cases of this problem were considered by Sedov 

12 ] (problem concerning the focusing of gas in one point and about 

its expansion from a point) and Kompaneetz [4 1. 

The second prohlem, for the case where the velocity of the piston 

is constant, was discussed by Sedov [2 1. The case when the piston 

velocity is a power function of time was dealt with by Krasheninni- 

kova 13 I. 

In this article we show that: (1) For certain given initial func- 

tions, the solution of Cauchy’s problem cannot be continued for all 

instants of time t. (2) Under certain values of the exponent in the 

formula for piston velocity, the solution for the second problem does 

not exist. 

* Translator’s Note. It is known that the problem on one-dimensional 

motion of gases can be solved by integrating 

related partial differential equations. If, among parameters which define 

problem of motion, besides linear coordinates r and time t there are only 

two parameters (constants) with independent dimensions, then these 

partial differential equations can be reduced to ordinary differential 
equations, The corresponding motion of gases bears the name of “auto- 

model motion”. [ 1 1 p. 149, [ 3 I, p. 22. 
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1, Cauchy's problem. We have the following equation: 

_K+n~++_~=6, _%+~+(v--yl)pU~O 

(1.1) 

-&($)+U.&(+=o 

The initial conditions are: 

a-P (1.2) 

Pfr, 0) = LIArz, p (r, 0) = N,BrP, ‘x (r, 0) = &fl J_$ p--T- (r > 0) 

For motions with plane waves likewise 

P (F, 0) = L,A (- p)‘, p (r, 0) = N$ (-- ‘)@ 

u (r, 0) = Ma 1/T (- $3 h <O) (1.3) 

Where a, /-I, Li, /Vi, Mi(i = 1,2) are dimensionless constants and A and B 
dimensional constants. 

Problem (1.11, (1.21, (1.3) is automodel [1,2 1 and its solution is 
reduced to integrating a system of ordinary differential equations 

dz 
dl’= @; yg, w w v - 1) + v (Y - 1) VI iv - QY - (1.4) 

-(y-~)V(~--_)(T/-q)-~2(~--) -t-~(y-t)lz) 

dlnX 
q- dV 

-_ (V--P-z 
W 

(V - q) g = 9 z _ (F_ g)a + Q ia + y) v 
(f-5) 

(1.6) 

where 

Cauchy's problem, i.e. problem (l.l), (1.2) or (l.l), (1.2) and (1.3) 

has only one analytical solution near any finite point of the t = 0 axis, 
except possibly point r = 0, according to theorem of Kovalevskaia. There- 

fore, close to X = 0, a unique solution analytical in X exists for the 

system (1.4), (1.5) and (1.6). 

At t -. 0 from (1.8) we arrive at expressions of the type (1.21, i.e. 
functions Gr, P, R at X -, 0 will have the following expansions: 
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It follows that the integral curve of equation (1.4) which corresponds 

to the solution of Cauchy's problem, will pass through the point V = z = 0 
where it will have an asymptotic representation 

z = _-Jz.L 1/s +... 
N1M12 

for M,+O, Nl$:O 

(1 .lO) 

z--+ v f_.. for Ml = 0, or N1 =O 

in addition for motions with plane waves we will have: 

c' = -M,h + . . . . P = L&” + . . . . K = N, + . . . (1.11) 

3=yf;rti2$ ..,, 01 N2 Mp2 
z=_ “-” + _*.. (1.12) 

In this manner, two integral curves correspond to the solution of 

Cauchy's problem. 'Ihese curves, close to the point V= z = 0 have 
asymptotic representations (1.10) and (1.12). 

2. 'IO aid in the solution of our problem it is necessary to conduct a 

preliminary qualitative study of the field of integral curves of equation 

(1.4). From this study we shall establish the path for an integral curve, 

originating from formulas (1.10) or (1.12) for small values of V and z, 
and the point of its termination for a complete solution of our problem. 

If the integral curve is known, then with the help of equation (1.5) 

we can calculate the distribution of X along this curve. 

Displacement along the integral curve from point V= z = 0 should 
cause a monotonic increase of parameter A. This increase continues to 

infinity or to some finite value, corresponding to the moving boundary of 

the region, occupied by the gas, if such a boundary arises as in the case 

of a moving piston. 

In this manner, Cauchy's problem will be solved if the corresponding 

integral curve is so constructed that, moving along the curve parameter 

A, it goes monotonically through the set of values indicated above. 

In the most general case of automodel motion, with fixed values of y 

and w, the field of integral curves and the character of the variation 

of h along them can be determined by only two parameters q and K [see 

(1.4) and (1.5)]. Zn the case of Cauchy's automodel problem, these para- 
meters are expressed through a and ,6 in formulas (1.7) which have unique 

solutions for a and /3 

K= - YX I g-1 ~=-y3c/q-2((1-1/q) 

From here we can see that the field of integral curves and the distribu- 

tion of X along them for an arbitrary automodel motion are simultaneously 

valid for some automodel problem of Cauchy. By using well-studied fields 

of integral curves of several special automodel problems, it is easy to 
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describe a corresponding Cauchy problem. 

In the case of a strong explosion, we have: 

q=:!/(:!+v), .=2v/y(2+v), 

which makes a = - Y, p = 0, 

In the case of problems of attenuation of an arbitrary explosion, in 
the case of a piston moving with a constant velocity, in the propagation 
of a flame front and a detonation, in the case of focusing at a point and 
expansion from a point in a gas [ 2 1 we have 9 = 1, K = 0 which makes 
a=O,@=O.Ca h UC y’s problem in this case is the first one in the case 
of motion with plane waves and the last one among the ones mentioned 
above. ‘This problem is developed completely and in every detail by Kochin 
and Sedov[Z]. 

In the case of 
we have 

a strong explosion in a medium of variable density [2 1 

4 = 2/(5-o), x= S/y(5--UO), 

which makes a = - 3 anda=-- o. Here, o is the exponent in the formula 
for the initial exponential distribution of density along the coordinate 
axis. In the case of the problem of the motion of gas [ 3 ] compressed by 
a symnetrical piston, moving with a velocity II = et” we shall have 
q=n+l,K=- 2nfy and this gives 

a=Zn/(n+1), p=O. 

Finally in Ref. [ 4 ] , Cauchy’s problem is considered for the case of 
motion with plane waves with a = a, /3 = 0 and for the following special 
values of the dimensionless constants in formulas (1.2) and (1.3): ML = 
M2 = L, = 0, N1 = N2 = L, = 1. 

The investigation of the field of integral curves, without assigning 
concrete values to parameters q and K for ir f 1 presents quite a difficult 
problem because for the solution of the problem, or to establish coordi- 
nates far some singular points, it is necessary to establish the number 
of real roots of a certain cubic equation, the coefficients of which de- 
pend on q and K in complicated manner, and to solve for these roots. 

However, for p = 1, the cubic equation degenerates into a quadratic, 
and the roots then assume a simple form. In this manner, for motions with 
plane waves, the coordinates of all singular points are known in the form 
of functions q and K, and the problem of the integral curve field investi- 
gation is greatly simplified, 

Characteristic isoclines are: 

for dzjdV = 0 

z Lt= 0, 
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for dz / dzy = 00 

lf = q, z = J_(” - 11 tv - 4) 
vv - x =fzW (2.4 

'Ihe points of intersection of these isoclines are singular points. In 

particular the singular points are the points of intersection of curves 

z = f,(V) and z = fgO')(th e coordinates of other singular points are 

obvious). By dividing the relation f,(V) = f2,CV> through by V - q we oh- 
tain a cubic equation. In the case of w = 1, this equation will have the 

following roots 

v z l==y+l’ 17, = qx 
q+x---1 

(2.3) 

Corresponding values of z are 

21 = - 
~+---1)I2-~(Y+~)41 
(Y+lYI2-(Y+f)xl ’ 

2, = 
[ 

q(P---1) 2 
Qf%--1 1 P-4) 

Note that singular point V= .z = 0 is a node in the most general case. 
Ihe fan of integral curves emanating from this point, because of asymptoti 

relations (1.10) and (1.12), corresponds to any given initial distribution 

Therefore, to solve Cauchy's problem for all initial distributions, every 

curve out of this bundle has to be traced through to a point where h = m 

or where h = A,, where A, is the value of h arising in the process of the 

motion of the boundary of the gas. It is known [2 1, that in the plane 

V, z points corresponding to such a boundary can only be the points 
located on the line V = q. ‘IIns the problem is to trace the integral 

curves of the fan to some special points like V= q, z = 0, z = m or 

points at which h = a3 (including infinitely distant singular points). In 

addition h must monotonically change along the integral curves. 

It is known [2 ] that on the plane V, z exists a parabola 

2 = 2, = (V- 9)" (2.5) 

on which, while moving along the integral curves that cross it, the para- 

meter h reaches a stationary value i.e. ah/as = 0 (where s is the length 

of of the integral curve). This means that if on parabola 

A,, then with a fixed r(or t) 

variations t(or r), then transitions 

along the integral curve over parabola (2.5) correspond to folding of 

integral surfaces u = u(r,t), p = p(r,t), p = p(r,t) back into the region 

of parameters covered previous to the transition across the parabola (2.5), 

that is the solution is discontinuous for all instants of time t > 0. 

'Ihe line X = A, is the *limiting line* determining the region of corres- 

ponding continuous solutions. The intersection of the integral curve 

with the parabola does not always mean that the solution cannot be 

extended beyond the line X = A, It is often possible to cross the parabola 

(2.5) in a jump which corresponds to discontinuous-solution-motions with 

shock waves. In all the previously discussed cases of automodel motion. 
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[2-4 1 the discontinuous solution was possible. This solution was set up 

in a unique manner. 

But sometimes it is impossible to set up either the 

discontinuous type of solution; this may take place in 

Cauchy's problem as is shown below. 

3. Consider Cauchy's problem for which the field of integral curves 

is the field of problems of a strong explosion. 

continuous or the 

the solution of 

Case 1, w + 1, Careful study of the field of integral curves for z > 0 
reveals the following picture fFig.1). All of the integral curves, 

emanating in a bundle from the origin of the coordinate system enter the 

singular point V = q = Z/(2 + v>, t = 0 where they have a slope 

- y/(2 + VI remaining integral curves going through the point V= 2/f2 + u); 
z = 0 except for straight lines z = 0 and V = 2/(2 + u) have the same 
slope at this point. All except one of them go into the singular point 

V= 2/(2 + VI, z = CX). 

The noted exceptional integral curve corresponds to the solution of 

the problem of a strong discontinuity and at .z + ~(1 enters into a singular 

point (saddle) V = 2/'!y(2 + YN , z = m. ‘Ihe equation of this curve is 

[21: 
(y - 1) vz [V - 2 I (2 + Yfl 

z= 7Z/Y(2$-v)-V] (3.4) 

l'he arrows on the integral curves indicate the direction of increasing X. 

From Fig. 1 we can see that as all integral curves come from the 

origin of the coordinates, cross parabola (2.5) (on which X reaches its 

maximum, but still remain finite); the continuous solution of Cauchy's 

problem cannot be continued for all values of t > 0. Discontinuous solu- 

tions of the problem, continuous for all values of t > 0 could be set up 
if a jump transition corresponding to the conditions of the shock wave 

could be made from the integral curves emanating from the origin to those 

emanating from point V= 2/(2 + v>, z = 0 and entering point V= 2/'(2 + v); 

z = W. Let us show that this is impossible. 

Because tbe relations on the shock wave map the region between the 

axis z = 0 and the parabola (2.5) into the region between this parabola 

and the parabola 

z=z2= 2y 
Y--l ( 2 2 v__ 

2sv > (3.2) 

it is enough to show that the above mentioned integral curves (the ones 

that have to be transited to by a jump) lie entirely outside the above 

mentioned region. 

The region containing these integral curves is limited on the left by 

the integral curve of the problem about a strong discontinuity (3.1) which 

has only one point common to the parabola (3.2) different from point 
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V= 2/(2 + VI, 2 = 0: 

V = 4/ (Y + a) (2 + V)> z=8~(~--1)/(~+1)~(2+~)~ 

which proves our statement, 

Fig. 1. 

Case 2, v = 1. For this case the field of integral curves for condi- 

tions 1 < y < 2 is represented in Fig. 2. This case differs from the 
case when v j= 1 by the presence of curves emanating from points V = 2 = 0 
and V= 2f3, z = 0 and extending into infinity at if+ 00. For this case 

the following asymptotic formulae hold 

2 =: CL=, A zz c$- (C, c, = const) (3.3) 

Eut limiting ourselves to the case of symmetrical initial distribution, 

we shall note that it is impossible to set up a solution continuable for 

all instants t > 0, because according to the indicated curves the mapped 

points cannot extend to infinity as according to (3.3) and (1.8) we 

would have u(O,t) f. 0, which contradicts the obvious conditions of 

syrnaetry. 

Now we arrive at the conclusion that the automodel problem of Ceuchy 



Probh of a piston for one-dimensional, non-steady 8otions of gas 251 

for the case when the field of integral curves coincides with the field 

of the problem of a strong explosion, has no solution continuable for 

instants t > 0. 

4. let us consider the problem of automodel motion of gas that is being 

forced out by a symmetric piston expanding by a power law [3 I. 

The field of integral curves for the problem about the piston coincides 

with the one about the problem of a strong explosion if n = - v/(2 , vf. 
In order to set up the solution of the piston problem, we have to find 

the integral curve (either continuous or discontinuous) that goes through 

the point V= z = 0 (which corresponds to a region in the physical space, 

not yet disturbed) and some point of a straight line V = 2/(2 + V) 
(corresponding to the piston) t2.3 I such that the parameter h along it 

will vary monotonically. However, referring to Figs. 1 and 2 we can see 

that such curves do not exist. As established above, the region, which 

can be entered by a jump from the integral curves emanating from the 

origin of the coordinate system, touches the integral curve of the problem 

about a strong explosion in one point only, which is an image of the 

origin of coordinates. 

'Iherefore the integral curves through which we can arrive at the 

straight line V = Z/f2 + u) remain outside of this region, Hence, the 

piston problem for n = no = - v/(2 + v) does not have a solution. let us 

see how the solution possibilities of the piston problem will be affected 

if n varies in the neighborhood of n = n,,. The study of the integral curve 

field for the piston problem reveals that with the value of n close to no 

the character of singular points and the distribution of integral curves 

remain the same as with n = no. 

one another in the point 
At n = no curves (3.1) and (3.2) touch 

v=v,= 4 8Y (Y - z=zo= 1) 
(Y + 1) (2 + VI ’ tr + 112 (2 -i- 9” 

When the value of n is close to nO, there exists an integral curve (only 
one) that goes through points V = I? + 1, z = 0 and V = - 2n/', t=OO, 

this curve at n = nO coincides with curve (3.1). Just as for n = nO , 
this curve bounds on its left a region of integral curves that emanate 

from the point V = R + 1, z = 0 and go to point V= n + 1, z = co. The 

parabola 

z=L[V-(n+1)]2 
Y-l (4.1) 

coincides with (3.2) at n = nO, and bounds a region on its right into 
which a transition can be made by a jump from the integral curves that 

emanate from the origin of the coordinates. 

At n = nu these curves have a common point of tangency and as the 
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right-hand sides of these equations are analytical functions of parameter 

n, when R is close to n0 , [for the first curve this follows from the 
analytical character of its [5 ] differential equation (1.41, for the 

second curve it is obvious from its implicit equation (4.1) 1, then the 

difference of these right-hand sides has an isolated zero for V= v. at the 
point II = nO. 

If it were possible to prove that this zero is simple, this would mean 

that if n varied in one direction from n,, (namely increase) then as shown 

in calculations performed in Ref. [3 ] the curves intersect, that is in 

the above mentioned regions's comnon part is created and it becomes 

possible to set up a unique, discontinuous type of solution; with decrease 

in n, the curves no longer have any comnon points and the regions no 

longer have a canon part. Therefore the solution ceases to exist. 

In Ref. [3 1 for several values of n > no a solution is set up, but 

with two values n,< no (n = - 0.5, v = 1, v = 2) a solution was impossible 
to set up. In this work, a solution is set up (by means of numerical 

integration) for n = - 0.5, w = 3, that is for n - no = 0.1. This shows 

that if the above mentioned zero is not simple and not the first one en- 

countered with decrease in n, then the next zero is larger than no and is 

quite close to the first one (not further than 0.1). 

In the article by Cherny [6 ] it was established that, during the 

solution of this problem by his approximate method, when n approaches no 

from above, the 'terms of the series, that give the solution of the problem, 

become of the same order, that is the series becomes divergent. This fact 

does not imply that the approximate method with n = no becomes inadequate 

for the solution of the problem, but that the solution for nd no does not 

exist. On the other hand, as the divergence begins at exactly n = no and 

not earlier (when n approaches no from above), this shows (although it 

does not prove) that the zero under consideration is not a simple one and 

the first one from above, that is the solution of the problem ceases to 

exist exactly at n = no and not earlier. 

Rased on the discussion above, we can formulate the following state- 

ment: 

A solution of the problem of motion of an ideal, nonconducting perfect 

gas, displaced by a symnetrical piston that has a velocity U= Ct" for 

- l< n < - y/(2 + V) does not exist. 

At n > - v/(2 + V) one discontinuous solution of the problem exists. 

5. l'he preceding considerations show that in working with some initial 

and initial-boundary problems about motions of an ideal, nonconducting 

perfect gas, it is impossible to set up a solution. 

In these cases for initial problems the solution exists only near the 

t = 0 axis. In the space of variables of r and t limiting lines appear. 

We can call them *limiting* because of analogy to a similar phenomenon 
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that is known for adiabatic steady state planar motions of gas. Here the 

solution cannot be continued beyond these lines. In the considered class 

of initial problems, the initial functions are unlimited at r = = or at 

r = 0. Sedov stated that in the case when the initial functions are un- 

limited at r- 0, Cauchy's problem does not have a solution continuable 

for all instants of time t > 0. ‘Ihis is connected with the fact that 

either the initial mass or the initial energy of gas at F = 0 is un- 

limited. Investigations of special cases confirm this statement, which 

will be proven below. It would be interesting to check this for a general 

case. 

It is easy to establish that the conditions for having finite initial 

mass and energy in the neighborhood of point F = 0 are a > - w; (3 > - u. 

Let us consider Cauchy's problem with a field of integral curves coincid- 

ing with the field of problems about a piston for n close to nO. 

Previously we established that the solution of this problem does not 

exist for n = n ,,. From the discussion of the character of the field of 

integral curves near n= n,, it follows that the solution of Cauchy's 

problem does not exist for n < nO but with n > nO a jump can be made onto 

integral curves going to point V= n + 1, z = 00 and onto a single curve 

going to point V= - 2&y, 2 = 00. Also if the two curves, between which 

the jump is made, are defined, the jump can be made in only one manner. 

Consideration of asymptotic formulae for solutions near point V= n + 1, 

z = m, shows that the solution with a jump on curves leading to that 

point, do not correspond to Cauchy's problem, but Cauchy's problem with 

a piston moving from the center of symaetry according to the law 

A(r,t) = A* as at point V = n + 1, z = m gives finite values for X and 

pressure. 

To Cauchy's problem corresponds the jump onto the unique curve, as 

according to asymptotical formulae close to point V = - 2&y, z = 00 we 

get that here X = 00, that is r = 0 and u(O,t) = 0. 'Ihis shows us that at 

n > nO Cauchy's problem has a unique discontinuous solution and does not 

have any solution at n< no. In this case n = no corresponds to a = - v 

that is the solution ceases to exist, when we violate the condition of 

limitation of initial energy in the neighborhood of r = 0, that is, the 

statement of Sedov is confirmed. 

let us investigate the solution for n + n,, + 0. It is easy to show 

that here the points on the integral curves from which the jump is made 

reduce to point V= z = 0. X varies continuously on the jump. At point 
V = z = 0, X = 0, this means that in the image of this point A is also 

equal to zero. But this image is not a singular point, hence X = 0 on the 

whole integral curve, onto which the jump was made for n = no, except for 
singular point V = - PnJvy, 2 = 00. Using the conditions for shock waves, 

we can find the distribution z(V), R(V), and P(V) for n = no (they are 

elementary functions and are given in [2 I ). For the transfer from argu- 

ment V to X we can use the function V(A). 
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For n = n0 it is the following: 

V= - 2no/vy, h #= 0 and V = V, X = 0, which means that in all space, 

the quantities Z, P and R do not depend on A. In order to find these 

quantities we must substitute V- - 2n&y into Z(V), R(V) and P(V) 

(see formulas (7.14), (7.15), (7.16) and (7.17) Chapter 4 of Ref. 12 I). 

This gives Z = 00, R = 0, P = 0~. 'Ihis is the limit approached by our 

solution for n.+ no + 0. 

Similarly we can watch the behavior of the solution of the problem 

about a piston for n + no + 0. Ihe limiting integral curve is then re- 

presented by (3.1) and the segment z = OO,- Zn,/'vy < V,< no + 1. 'Ihe 

distributions of h and R along this segment are: 

)~=h,~=(n,+I)(n,+l+2n,,V()-~(V+2no/vy)t (5-l) 

R=c[(n,+ 1 -V)/(V +2n,,vy)]y'l (C = const) (5.2) 

Here the condition X for piston = n0 + 1 is satisfied, From (5.1) we can 

see that h = 0 for V=- 2no/vy, ,z = 0~. Since X must increase monotonically 

along the whole integral curve which describes the solution, then h = 0 

on every part of the integral curve which coincides with (3.1). 

'lhe distribution of Z(V), R(V) and P(V) along (3.1) should be mapped 

continuously on the distribution along segment t = m,- 2no/vy < V< 

no + 1. lhis gives for constant C a value of zero because from R(V) along 

(3.1) it follows R(-Pr+,/vy) = 0. 'lhe limiting solution will be Z = m, 

P=m,h=h 
nO' 

'Ike meaning of that solution is as follows: because on the shock wave 

X = 0, the shock wave is going to infinity instantaneously, leaving dis- 

tributions of parameters in the form 

U = f V(h)jt,S,= 00, p=oo, p=o 

Because here, as everywhere, the pressure on the piston is equal to 

infinity, then to accomplish its motion according to the prescribed law 

with n = no it is necessary to apply an infinite amount of work. Thus, 

to move piston for n < no according to r = [c/(n + 1)1 t*l is impossible 

i.e. making the statement of a problem for these values of n loses all 

meaning, which shows the senselessness of solving the piston problem for 

n< no. 

In conclusion I sincerely thank L.I. Sedov for his interest in the 

present work. 
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